AWS SUMMIT ONLINE

대용량 한글 자연어처리 모델의 클라우드 분산 학습 및 배포 사례

전희원 연구원 SK Telecom 김무현 시니어 데이터 사이언티스트 AWS Korea

강지양 시니어 딥러닝 아키텍트 AWS Korea

Korean GPT-2 (KoGPT2)

GPT(Generative Pre-Training)2 - 1

- Language Model based Transformer
 - Language Model
 P(아버지가 방에 들어가신다.) > P(아버지 가방에 들어가신다.)
 - Unsupervised pre-training

$$L_1(u) = \sum_i \log P(u_i|u_{i-k},\ldots,u_{i-1};\Theta)$$

Transformer decoder

$$h_0 = UW_e + W_p$$
 $h_l = transformer_block(h_{l-1}) \forall i \in [1, n]$ $P(u) = softmax(h_n W_e^T)$

GPT(Generative Pre-Training)2 - 2

> A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

KoGPT2 Training - Data

Corpus

Data	# of Sentences	# of Words		
Korean Wiki	5M	54M		
Korean News	120M	1.6B		
Other corpus	9.4M, 18M	88M, 82M		

20GB raw text (5 times larger than KoBERT)

Tokenizer

- Trained with 25M sentences(wiki + news)
- BPE(Byte Pair Encoding)
- 50,000 vocab

\$ head dataset/wiki_bert_dataset_201901.txt
지미 카터
제임스 얼 "지미" 카터 주니어(, 1924년 10월 1일 ~)는 민주당 출신 미국 39번째 대통령 (1977년 ~ 1981년)이다.
지미 카터는 조지아주 섬터 카운티 플레인스 마을에서 태어났다.
조지아 공과대학교를 졸업하였다.
그 후 해군에 들어가 전함·원자력·잠수함의 승무원으로 일하였다.
1953년 미국 해군 대위로 예편하였고 이후 땅콩·면화 등을 가꿔 많은 돈을 벌었다.
그의 별명이 "땅콩 농부" (Peanut Farmer)로 알려졌다.
1962년 조지아 주 상원 의원 선거에서 낙선하나 그 선거가 부정선거 였음을 입증하게 되어 당선되고, 1966년 조지아 주 지사 선거에 낙선하지만 1대통령이 되기 전 조지아주 상원의원을 두번 연임했으며, 1971년부터 1975년까지 조지아 지사로 근무했다.
조지아 주지사로 지내면서, 미국에 사는 흑인 등용법을 내세웠다.

tokenizer('news_wiki_2019_large_vocab.model', 'dataset/wiki_bert_dataset_201901.txt', 'dataset/wiki_bert

```
$ head dataset/wiki_bert_dataset_201901_large_vocab_tok.txt
_지미 _카터
_제임스 _얼 _" 지 미 " _카터 _주니어 ( , _19 24 년 _10 월 _1 일 _ ~ _ ) 는 _민주당 _출신 _미국 _39 번째 _대통령 _ (19 77 _지미 _카터 는 _조지아주 _섬 터 _카운티 _플레 인 스 _마을에서 _태어났다 .
_조지 아 _공 과 대학교 를 _졸업 하였다 .
_그 _후 _해군 에 _들어가 _전 함 · 원자력 · 잠 수 함 의 _승무원 으로 _일 하였다 .
_1953 년 _미국 _해군 _대 위로 _예 편 하였고 _이후 _땅 콩 · 면 화 _등을 _가꿔 _많은 _돈을 _벌었다 .
_그의 _별명 이 _" 땅 콩 _농부 " _( P ean ut _F ar mer ) 로 _알려졌다 .
_1962 년 _조지 아 _주 _상원 _의원 _선거에서 _낙선 하나 _그 _선거 가 _부정선거 _ 였 음을 _입증 하게 _되어 _당선되 고 , _1966 년 _ _대통령이 _되기 _전 _조지아주 _상원의원 을 _두번 _연임 했으며 , _1971 년부터 _1975 년까지 _조지 아 _지사 로 _근무 했다 .
_조지 아 _주지사 로 _지내면서 , _미국에 _사는 _흑인 _등 용 법을 _내세웠다 .
```

KoGPT2 Training - Distributed training

- 'Single Reducer' to 'Ring Reducer'
 - Linear scale training performance with Horovod
- Instant corpus pre-processing
 - No need to load all data on memory.
- Syncing training chunks on every epoch.
 - No need to stop training to add more data.
- Fused GELU (with GluonNLP team)
 - About 15% performance improved

KoGPT2 Training - Performances

Sentiment Analysis (Naver movie review data)

Model	Test Accuracy		
BERT base multilingual cased	0.875		
KoBERT	0.901		
KoGPT2	0.899		

Paraphrase Detection

Model	Test Accuracy			
KoBERT	0.912			
KoGPT2	0.943			

KoGPT2 Demo

Conversational Al

KoGPT-2 Explorer

이 페이지는 KoGPT2의 데모를 위한 페이지입니다. 개발 과정의 정성적 성능을 보기 위한 페이지로 모델은 언제든지 바뀔 수 있습니다.

한글 어절을 입력하면 그 다음 단어를 생성해주며, 후보를 클릭함으로써 계속 생성해 낼 수 있습니다. Undo버튼을 누르면 마지막 선택이 제거됩니다. '__'는 공백을 의미합니다.

Sentence:

여러분 2019년 수고하셨습니다. 올해에는

Options:

6.9% ____

6.1% __좋은

4.5% __더욱

2.2% __우리

2.0% __=

1.5% __모든

1.5% __정말

1.5% __건강

1.4% __작년보다

1.2% __모두

← Undo

SKT AIX에서 제공하고 있으며 UI는 Im-explorer를 기반으로 작성되었습니다. 문의 사항은 gogamza@sktair.com로 주세요.

Distributed training on AWS

Infra for distributed training - scale OUT

Multiple Computing Resources

Tools for multi-GPU and distributed training

Deep learning framework

- TensorFlow tf.distributed.Strategy
- PyTorch DistributedDataParallel
- Apache MXNet Parameter server

Toolkit for distributed training on top of deep learning frameworks

- All-reduce based distributed training framework, Horovod
- A deep learning optimization library, DeepSpeed

AWS ML services for distributed training

Amazon EC2

- Amazon EC2 P3dn.24xlarge for compute (NVIDIA V100 TensorCore GPU)
- Elastic Fabric Adapter for high speed network (100Gbps)
- Amazon FSx for Lustre for shared storage
- Deep Learning AMI
- EC2 Launch Templates or AWS Parallel Cluster for automation

Amazon SageMaker

- ml.p3dn.24xlarge ML instance for compute
- Elastic Fabric Adapter for high speed network
- Amazon S3 with SageMaker Pipe mode or Amazon FSx for Lustre

AWS architecture for KoGPT-2 training

Deep Learning

Scientist

What we, as a human team, did

CPU and GPU utilization monitoring

- GPU monitoring script
- Amazon CloudWatch

Bottleneck analysis

- Apache MXNet profiling
- Horovod timeline profiling

Code Review for better choices Training running state check

Identifying bottleneck

GPU usage drop
+
CPU usage up
+
Disk write operation up

Tuning trials

- Activation function, GELU (+++)
- NVIDIA implementation of Adam, BERTAdam (+)
- Horovod option tuning
- Mixed precision training (+)
- hvd.DistributedTrainer instead of hvd.DistributedOptimizer
- Data transposing using GPU instead of using CPU (+)

Tuning result

# of node	throughput (rec/sec)	float32/16	throughput/ node	
1	53.4	float32	53.4	mxnet_cu101mkl-1.6.0b20191006
2	93.8	float32	46.9	
4	182.5	float32	45.6	
4	238.6	float16	59.7	
6	269.9	float32	45.0	
6	346.5	float16	57.8	
8	500.0	float16	62.5	
12	533.9	float16	44.5	
12	534.6	float16	44.6	tree
16	965.4	float16	60.3	tree
1	56.6	float32	56.6	mxnet_cu101mkl-1.6.0b20191230
1	75.4	float16	75.4	
1	81.0	float16	81.0	updated GELU

Final training decision

5 day training with 8 EC2 P3dn.24xlarge instances (64 Nvidia V100 GPUs)

Why not using Amazon SageMaker for training?

Yes!

Since all the training configuration and tuning have completed, both training new pretrained models on new dataset and

fine-tuning for downstream NLP tasks on Amazon SageMaker is a desired option.

Inference on Amazon SageMaker

Amazon SageMaker: Build, Train, and Deploy ML Models at Scale

Pre-built notebooks for common problems

Collect and prepare training data

Built-in, high performance algorithms

Choose and optimize your ML algorithm

One-click training on the highest performing infrastructure

Set up and manage environments for training

Model Optimization

Train and Tune ML Models

One-click Deployment

Deploy models in production

Fully managed with auto-scaling for 75% less

Scale and manage the production environment

Inference vs Training

Inference	Training
Usually run on a single input in real time	Requires high parallelism with large batch processing for higher throughput
Less compute/memory intensive	Compute/memory intensive
Integrated into the application stack workflows	Standalone, not integrated into an application stack
Runs on different devices at the edge and in the cloud	Run in the cloud
Runs all the time	Typically runs less frequently (train once, repeat infrequently)

The majority of the cost and complexity of Machine Learning (ML) in production is due to Inference

Amazon SageMaker – Instance Types for Inference

	Instances with CPUs			Instances with GPUs/Inference chips				
Instance Family	t family	m family	r family	c family	p family	g family	Inf1	Elastic Inference
Workload Type	Short jobs/ Notebooks	Standard CPU/ Memory ratio	Memory optimized	Compute optimized	Accelerated Computing- Training and Inference	Accelerated inference, smaller training jobs	Accelerated Computing - Inference	Cost- effective Inference Accelerators
	t3.2xlarge 8 vCPU 32 Mem	m5.2xlarge 8 vCPU 32 Mem	r5.2xlarge 8 vCPU 64 Mem	c5.2xlarge 8 vCPU 16 Mem	p3.2xlarge 8 vCPU 61 Mem 1xV100 GPU	g4dn.2xlarge 8 vCPU 32 Mem 1xT4 GPU		

https://aws.amazon.com/sagemaker/pricing/instance-types/

SageMaker Endpoint - Scalable and Highly Available

- Deploy more than one instance behind an inference endpoint for high availability
- Enable automatic scaling with a predefined metric or a custom metric
- You can manually change the instance number and type without incurring downtime
- Set Amazon CloudWatch alarms on availability and error rates

Deploying in SageMaker at Any Scale

```
sagemaker_session = sagemaker.Session()
role = get_execution_role()
model_data = 's3://<your bucket name>/gpt2-model/model.tar.gz'
entry_point = './gpt2-inference.py'
mxnet_model = MXNetModel(model_data=model_data,
             role=role,
             entry_point=entry_point,
              py_version='py3',
             framework_version='1.6.0',
              image='<AWS account id>.dkr.ecr.<AWS region>.amazonaws.com/kogpt2:latest'
# HTTPS endpoint backed by 16 instances, multi-AZ and load-balanced
predictor = mxnet_model.deploy(instance_type='ml.c5.xlarge', initial_instance_count=16)
```


Auto Scaling Your Endpoint

Scaling policy: Target value of 25000 (per min) for SageMakerVariantInvocationsPerInstance

References

KoGPT-2: https://github.com/SKT-AI/KoGPT2

AWS Samples GitHub: https://github.com/aws-samples

AWS Korea Blog: https://aws.amazon.com/ko/blogs/korea/

Machine Learning on AWS: https://ml.aws

Amazon SageMaker: https://aws.amazon.com/sagemaker/

GluonNLP: https://gluon-nlp.mxnet.io/

Amazon ML Solutions Lab: https://aws.amazon.com/ml-solutions-lab/

여러분의 소중한 피드백을 기다립니다!

강연 평가 및 설문 조사에 참여해 주세요.

감사합니다

